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ABSTRACT
The duality model for convex programming studied recently by ‘
E. L. Peterson is analyzed from the viewpoint of perturbational duality |
theory. Relationship§ with the traditional Lagrangian model for ordinary
programming are explored in detail, with particular emphasis placed on the
respective dual problems, Kuhn;Tucker vectors, and extremality conditions.
The case of homogeneous constraints is discussed by way of illustration.
The Slater existence criterion for optimal Lagrange multipliers in ordinary
programming is sharpened for the case in which some of the functions are
polyhedral. The analysis generally covers nonclosed functions on general
spaces and includes refinements to exploit polyhedrality in the finite~
dimensional case. Underlying the whole development are basic technical facts
which are developed concerning the Fenchel conjugate and preconjugate of the

indicator function of an epigraph set.
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SIGNIFICANCE AND EXPLANATION

Linear programming has become an indispensible tool in scolving managerial
and engineering optimization problems, but in order to apply linear programming
it is necessary to make simplifying assumptions since most real-lite problems
are inherently nonlinear. Nonlinear problems are an order of magnitude more
difficult than linear ones, and it is only comparatively recently that it has
been possible to develop a theoretical understanding of nonlinear programming
comparable to the well-established theory for the linear case.

Given any linear programming problem, a second "dual" linear programming
problem exists which plays an essential role in both theoretical and practical
solution of this class of problem. Given a nonlinear programming problem,

dual problems also exist, which can be formulated in various ways. This is

the context of the present paper.

This paper centers around the theoretical analysis of the nonlinear
programming problem of minimizing fo(x) subject to side conditions fi(x) <0
(i =1,...,m), where all the functions are convex. A broadened form of the
problem, introduced and studied recently by E. L. Peterson under the name of
"generalized geometric programming", is analyzed here in detail and extended
to general spaces. For this broadened problem an alternate but essentially
equivalent formulation, or "dual problem", exists which has the same structural
form. When specialized to the nonlinear program above, a dual problem results
which differs slightly from the widely used dual involving finding optimal
Lagrange multipliers. Considerable attention is given to comparing and
contrasting these two dual approaches to solving the nonlinear program. Along ﬂ
the way, standard facts concerning nonlinear convex programs are developed in l

somewhat greater generality than previously available.




SYMMETRIZED SEPARABLE CONVEX PROGRAMMING

L. McLinden

1. Introduction. One of the most useful model problems for

convex optimization is the ordinary convex programming problem, in which a
convex function is minimized subject to finitely many convex inequality
constraints. The traditional dual approach to this problem involves the so-
called Lagrangian duality model, in which solving the dual problem amounts
to finding the optimal Lagrange multipliers. 1In 1972 E. L. Peterson (7]
outlined an alternate duality theory for this problem, and various aspects
of this model have been developed in a series of related papers [8, 9, 10,

11, 12, 13, 14, 15]. Peterson’'s model provides a dual problem having more

variables than the Lagrangian dual, but in a sense requiring no suboptimiza-~

tion for the dual objective function evaluations. The model is somewhat more
general, too, in that its primal problem has additional structure built in
which acts to force the dual to have the same form. That is, it is a
"symmetric" duality model for ordinary convex programming. Additive

separability plays a large role in the model, at least in a formal way.

Research sponsored in part by the National Science Foundation under grant
number MPS75-08025 at the University of Illinois at Urbana-Champaign and in
part by the United States Army under Contract No. DAAG29-75-C-0024 at the
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In this paper Peterson's model is analyzed from the viewpoint of

R. T. Rockafellar's perturbational duality theory (see, e.g. [19] or [21]).
The setting is extended from R" to general spaces, the lower semicontinuity
requirements on the functions involved are relaxed, and the extremality or
optimality conditjions are sharpened. Particular emphasis is placed on comparing
the "symmetrized" dual with the usual, Lagrangian dual, and it is shown in
a precise way that the éntire symmetrized duality model projects onto the
traditional Lagrangian duality model. Enroute to this comparison, the standard
facts about the Lagrangian model are developed here in a setting slightly more
general than previously available in the literature. The case of homo-
geneous constraint functions is discussed as an illustration, with the present
treatment extending recent work of C. R. Glassey [2] on explicit duality
for such problems. As a technical byproduct of the present framework, a
new existence criterion is established for optimal Lagrange multipliers in
the case of R". Namely, it is shown essentially that it suffices to have
a Slater point for which the polyhedral constraint inequalities are satisfied
only weakly; this sharpens slightly Rockafellar's theorem [19, Theorem 28.2],
which already handled the«important case in which the polyhedral functions are
actually affine.

The plan of the paper is as follows. In §2 we establish
notation, state the primal, dual and saddlepoint problems associated
with the duality model under study, and indicate some of the technical issues
treated later concerning the "symmetrized" dual and the Lagrangian dual.
In 83 we derive certain technical facts on which the entire development rests.
These concern formulas for the Fenchel conjugate and 'preconjugate" of the

indicator function of anepigraph set, together with 'he associated sub-




differential formulas. The preconjugate result is somewhat novel

technically, in that it requires the reverse of the common proof technique of
dualizing a result; it is a "predual" type of result. In §4 Peterson's
model is derived in broad outline form from a notationally streamlined
cone-constrained model. Appeal is freely made here to the various facts
concerning Rockafellar's perturbational duality approach. This viewpoint
provides the basis for distinguishing quite clearly in §5 between the
symmetrized duality model and the Lagrangian duality model. There, a detailed
comparison of the two models is made. The focus is on a comparison of

the respective dual problems, Kuhn-Tucker vectors, and extremality conditions.

This section canbe viewed as extending somewhat, to the case of general convex
functions, certain ideas introduced by Rockafellar in 1964 [18] and later
developed by him for the case in which the functions involved are faithfully
convex [20]. In 856 certain projection phenomena noted in §5 are examined

further, and it is shown the precise sense in which the entire symmetrized

model (consisting of primal, dual and associated saddlepoint problems) projects

onto the ordinary duality model.

Throughout, we use rather freely the general definitions and

background material concerning convexity which is found in [19, 21].

2. Notation and statement of model. The model we shall study

is heavily dependent upon additive separability, which may either be already
available naturally or else be induced artificially. In either case it

is therefore necessary for us to consider, at least in a formal way, a
number of distinct spaces. Thus, let there be given convex functions

£y fi’ f

> defined on spaces Xo, xi, X,, where the indices i and j

j ]
range over finite (possibly empty) index sets I and J. The spaces may

in general be any real linear spaces equipped with locally convex Hausdorff

topologies. In particular, they might all be Rn, or Hilbert spaces, or reflexive

Banach spaces undrr the norm topologies. Let the functions take values in

(-», +o] without being identically +*, and assume each function has




lower semicontinuous hull somewhere finite. (The latter is fulfilled auto-

matically in the case of R".)

Throughout, when referring to product spaces we use a convenient
and transparent notational abbreviation. Namely, the product apace><:(x1|i € 1}
will be denoted simply by XI; its elements, the ordered |I|-tup1es
(xi)iel where X, = )(1 for each 1 € I, will be denoted simply by xI.
Similarly for xJ and xJ, RI and EI. RJ and EJ. It is convenient also

to let X denote the product space

I

X = xo x X x xJ X RI x g7

R™.

When J = @, for example, as is the case in (2.55 below, we agree to inter-
pret XJ and RJ as the degenerate vector space consisting of just the

zero vector. Such trivial "factor" spaces can clearly be carried along at

no cost, and are effectively suppressed when the general model is specialized,
such as in 6§85, 6 for instance.

Now to each f1 associate a function *1 on x1 x R defined by

0 if f, (x,) +&, <0

- R

v;(x., ) = (2.1
R {+°° otherwise ’
and to each fj associate a function Oj on Xj x R defined by
(fjﬁj)(xj) if Ej >0
+

Oj(xj,ﬁj) = (ij )(xj) if Ej 0 (2.2)

+ if g, <0

To within a minus sign, wi is just the indicator of the epigraph of fi’
and as such carries a complete description of fi' In the definition of

g the terms fjﬁj are the right scalar multiples of fj' defined by

j’

-1
j)(xJ) f.ij(EJ xj).

(fJE
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The term fjo+ is the recession functionof fj' defined by

(£.01)(x,) = suplf, (x! + x,) -

3 ! 3] 4 fj(xj) Ix; € dom fj} ¢

It serves to describe the growth properties or asymptotic nature of fj.

Clearly 0O, carries a complete description of f Less obvious is the

J ¥
fact that OJ is positively homogeneous and convex in (xj.qj) jointly.
The oj's will be seen to play a role dual to that of the "1"' Finally,

define on X an additively separable function f by the formula
EG) = EGe, 2 Xy B4 6)

- (x) + ; ¥y (x,6.) + § 0y (x;,E,). (2.3)

The primal problem of the duality model studied in this paper

can now be stated:

(®) min{f(x) |x € K},
where f 1is given by (2.3) and K 1is a convex cone of the form
K=Pxq PCX xXx xx, q={¢,e)HE =0}, (2.4)

for some given nonempty convex cone P. In other words, (P) is the

problem

minimize fo(xo) + % wi(xi,ﬁi) + § Oj(xj,Ej)
I

subject to (xo, Xy xJ) €p, EI =0, EJ € RJ .

where the *1 and Oj are as in (2.1) and (2.2). Essentially this problem
was introduced by Peterson [7] in 1972, and various technical aspects of it

are treated in [8-15].

Notice that the only way in which the variables in (P) can be
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coupled, or made dependent on one another, is by means of the cone P.

This high degree of formal additive separability makes possible some
technical simplifications in deriving certain required formulas and also in
carrying out some of the proofs. To illustrate how coupling of variables can be

achieved, consider what is probably the most important case, that in which
J=¢ and P = {(xo.xl)lxo =X, Vi € 1}. (2.5)

It is immediate from (2.3), (2.1) and (2.4) that (P) is then just the

ordinary convex program
®,) min{f (x )£, (x)) <0, V1€,

provided we ignore the presence of the trivial variables Ci' which must be

zero, and also the fact that there are really 1 + |I| copies of the

variable X . Other special cases of problem (P) are described in [8].
The problem dual to (P) in the symmetrized model involves the L

Fenchel conjugate of f,
*
f (y) = sgp{<x, y> - £(x)}.

Due to additive separability, cf. (2.3), this can be expressed in terms of

the conjugates of the individual terms fo’ f,, f, making up f:

1* %3
f*(y) - f*(yo, yI. yJ. nI. n”) ;
* * *
-f () + ; ¥, vy N+ § o5 vy Ny (2.6)

I
Here the variables vy, Yyr ¥4 yI, n, etc., range over the spaces

b 4" Yo’ Yi’ YI, RI, etc., which are dual to the original spaces (or more

generally, which are paired in duality with them [1, 3]). The value of a
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continuous linear functional y € Y at a vector x € X is denoted by
<x, y>, etc. In particular, in the case of R" this bracket notation
simply means the usual dot product of two vectors.

The problem dual to (P) can now be stated:
* *
(D) -min{f (y)|y € K },

*
where K is the cone dual to K (i.e. the negative polar of K). According

to (2.4), we have
* * * *
K =P xQ, Q = l(nI.n")InJ = 0}, (2.7)
and so by (2.6) this problem is therefore of the form
-ninimize £ (y ) + ) § )+ Jo ot )
I 1 J

*
subject to (y , yI. yJ) €P, n €ER, n =0.

It is not fully apparent from this that (D) really has the same form as (P).
It follows, however, from the facts that the functions conjugate to wi and

0, are given by

h |
g T £ >0
( { ”1)(y1) if ny
* e o' if 0 2.8)
vy (yi,ni) = ( i )(’1) ny (2.
+ o if n1 <0
and

- St j (2.9)

+ © otherwise s

0*(}"")'

0 if £, (y) +n, <0
Lihed U

*
respectively. This shows that (D) is formed from convex functions fo > f1 . fj

*
together with finite index sets I, J and convex comnes P*, Q. in

essentially the same manner as was (P), by just interchanging the roles
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of I and J.
For the important case (2.5), in which (P) becomes essentially
the ordinary convex program (Po). we have
P' = iy, YDy, + [y, =0 (2.10)
I

This means that (D) assumes the form

i | R - % £

* *
max{-f_"(y ) - g (£, n) Gy, + { y; =0 and n

i
We shall present in §5 a mild condition under which this problem can be

* »
provided the terms fi n, are interpreted as f1 d+ whenever n, = 0. 19

*
simplified significantly, namely by interpreting the terms f‘ n1 as W{O}
whenever n, = 0. On the other hand, the dual problem associated to (Po)

by the ordinary, i.e. Lagrangian, model is

() Imax{inf £ (x)) + ; nifi(xo)}}, .
n> x€C
= o
where C = dom fo ﬂ(;\dom fi' It will be shown, among other things, that the

optimal values in problems (D) and (Do) always satisfy
val (D) < val (D),

where (D) here is understood to be the problem (2.11). Under relatively
weak assumptions which vary slightly with the situation being treated, this

inequality is actually an equality, and furthermore a vector nI solves

(Do) if and only if there exist vectors ¥y yI such that (yo, yI, nI)
solves (D), i.e. (2.11). 1In other words, under mild conditions the ordinary

dual (Do) is the image of the 'symmetrized" dual (2.11) under the projection

transformation (yo, yI, nI) +> nl. Peterson [14] has also observed essentially
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this connection between the two duals. The connection was also indicated

earlier by Rockafellar rather implicitly in [19, top p. 322] and explicitly

in [20], where it forms a key element in the computational approach suggested

there.
In 1964 Rockafellar [18, p. 88, esp. Theorem 5] established a strong

duality theorem relating (Po) to problem (2.11). He invoked a Slater-type
constraint qualification and worked with constraint functions which were
continuous and everywhere finite; a refinement to cover affine constraints
was included. Also, in (19, pp. 322-323] and [20] Rockafellar generated essentially
problem (2.11) as a dual to (Po) via the general perturbational duality
theory. This involved equipping (Po) with a certain rather full class of
perturbations. In the development below we exploit the perturbational
duality approach fully in deriving the symmetrized model. By this means it
will be clear that the present, symmetrized model stems from the same, full
class of perturbations, but with the added elements of separability and
symmetry built in as well.

Underpinning the entire symmetrized model are the conjugacy and
subdifferential fomulas for the functions w& and qj defined in (2.1) and
(2.2). The conjugacy formulas, (2.8) and (2.9), have already been invoked
in stating the dual problem, and the subdifferential formulas will be es-
sential in developing the model's extremality conditions. We turn now to

the task of deriving the specific facts which will be needed.

3. The indicator of an epigraph: its preconjugate and conjugate.

To a large extent, the material in this section builds on facts and techniques
concerning recession vectors contained in [17, 19]. Proposition 2
is somewhat novel in that it amounts to a 'pre-dual" version of

Proposition 1, as opposed to the usual dual type of result. The reader can

skip over the proofs in this section on first reading.




LEMMA 1. If f 1is a proper convex function with 1lsc f somewhere

* *
finite, then wdom £ = f 0+.

PROOF. For f actually closed, this was established in (17,
Corollary 3C(d)], while for f not necessarily closed but the underlying
space Euclidean, the result was established in [19, Theorem 13.3]. The
latter proof really carries over to the general situation, as we now
demonstrate. Since f* is by definition the pointwise supremum of the family
of continuous affine functions of the form h(y) = <x,y> - £, where
(x,E) € epi £, it follows that epi f* is the (nonempty) intersection of
the corresponding closed halfspaces epi h. Hence, epi(f*0+) = 0+(ep1 f*)
is the recession cone of this intersection. By [17, Theorem 2A(b)], it follows

that
ot n {epih| (x,E) € epi f} = N (ot epi h |(x,£) € epi f}.
Now for h(y) = <x,y> - £ it is clear that
0+ epi h = epi h6+ = epi <x,°*> .
Combining these facts, we obtain

*
epi(f 0+) =  Of{epi <x,*>|(x,£) € epi f}
= epi(sup{<x,*>|x € dom £})

*
L epi(wdom f)’

which completes the proof.

We now deal with the functions of type wi’ given in (2.1). Our
first result establishes formula (2.8) and more.

PROPOSITION 1. Let f be a proper convex function with 1sc £

somewhere finite, and write E = {(x,E)If(x) e s 0}. Then cl wE is the




11

indicator function of {(x,£)|(cl £f)(x) + £ < 0}, and

E'm@) 1 n>o0
w;(y.n) = { Mo i n=o

+ if n<o,

Hence, one has the inequality

(f*ﬂ)(y) 2 <x,y> + En whenever f(x) + £ <0 < n,
where f*n is interpreted as f*O+ when n = 0. Moreover, eguality occurs in this
1nequalit¥ if and only if (y,n) € awz(x.g), and this is equivalent to the

conditions
y€d(nf)(x), f(x) +E£<0<n, (f(x)+ &)n=0,

where nf is interpreted as wdom £ when n = 0. (Note: 3(nf)(x) = naf(x)
when n > 0.)

PROOF. First, cle = wclE' Since cl(epi f) = epi(cl f), it
follows that cl E has the form asserted. Next, we compute w;(y.n). If
n < 0, then using any (x,£) € E we obtain

w;(y’n) 2 su2{<;,y> + En} =+ o,
€<§

If n = 0, we have

w;(y.o) = sup{<x,y>|(x,§) € E}

sup{<x,y>|x € dom f}

0" (v,

where the last equality is by Lemma 1. If n > 0, we have

A 7 e e A Ak s S VARSI AR B 7 A e T AT B



sup{<x,y> + &En|f(x) + £ < 0}

sup{<x,y> - nf(x)}
x

n‘sup{<x,n-1y> - f(x)}
X

*
(f n)(y).

This establishes the conjugacy formula. Using it, Fenchel's inequality

VE(6E) + Y (y,m) > <x,y> +

for the function wE reduces to the inequality asserted. Moreover, we know

that the case of equality is characterized by the condition (y,n) € Ows(x.i)

' *
{ on the variables involved. By the particular form of wE and WE , this

is equivalent to having either

(@) f(X)+E<0<n and (£N)(y) = <x,y> + £n

or else

() £(x) +E<0 =1 and (£0)(y) = <x,y>.

Now we claim that (a) is equivalent to

(@') f(x) +€=0<nand y€ I(nf)(x),

and (b) is equivalent to

(') f(x) +E<O0O=nand yE€ awdom f(x).

* *
Indeed, suppose (a) holds. Since n > 0, the easy identity (nf) = f n holds.

From this and the definition of (nf)*(y) follows

<X,y - nE(x) < (£ 1) (y).

Combined with the rest of the information in(a), this yields

f(x) + £ =0.

Now using this, we can rewrite the equation in (a) as
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nE(x) + (£ 0)(y) = <x,y>,

which, in view of the identity cited earlier, is equivalent to y € 93(nf) (x).
The converse implication, starting from (a'), follows by reversing the last
part of the argument just given. Now suppose (b) holds. Then x € dom f, so

that

* 4
“’dom f(X) + (£ 0 )(y) = <x,y>.

% * 4
€ -
Since wdom g f0 by Lemma 1, this means y awdom f(x) This argument,
too, reverses to establish the converse. To complete the proof, just observe
that the disjunction (a') or (b') is equivalent to the characterization we
needed to prove.

We turn now to functions of type O given by (2.2). When fj

j?
is closed, the basic information needed later for the symmetrized model can
be obtained by "dualizing" Propositionl in the usual manner (i.e. by applying
it to f* in place of f and using f** = cl £ =f). In order to
cover fj's which are not necessarily closed, however, we now derive another,

more general result, one somewhat parallel to Propostion 1. It covers the

application to the O0,'s arising from nonclosed f,'s as in (2.2) and also a

J i
bit more. It may be useful in applying the symmetrized model to situations
in which the recession functions ij+ are not readily available.

PROPOSITION 2. Let f be a proper convex function with 1sc f
somewhere finite, and let h be any function (not necessarily convex)

satisfying (cl f)O+ <h<y . (The choices h =V and h = fO+ are
-7 ="{o} {0}

the main ones.) Then the (not necessarily convex) function o0 defined by
(FE)(x) if £ >0

o(x,£E) = h(x) if £ =0

+ @ if £ <0




satisfies

* 4 *
: 0 =g where E = {(y,n|f (y) +n <0}

and in fact

((cl £)E)(x) 1f E> 0
(1sc 0)(x,6) = Yp(x,6) = {((cl DO 1f E£=0

+ ® t1fs & <0
where 1sc 0 is closed proper convex. Hence, one has the inequality
*
(£E) (x) > <x,y> + &n whenever f (y) +n <0< &,

where f£ 1is interpreted as h when & = 0. Equality occurs in
this inequality if and only if (y,n) € 90(x,£), and this is equivalent to

the conditions
yEIEE)(X), £(y) +N<0< E, (£(y) +n)E=0,

where again f£ is interpreted as h when & = 0. Moreover, the function
0 is convex if and only if h is convex and satisfies w{O} 2h 2 fot.

(Thus, the choice h fO+ is the least which will make O convex.) Finally,

Rn, the function 0 is polyhedral convex if and

in the event that X

only if £ is polyhedral convex and h = f0+.

PROOF. First we show why h can be taken to be f0+, i.e. why

(cl f)0+.§ f0+. This is equivalent to epi fO+ C epi (cl f)0+. Since
epi f0+ = 0+ epi f, epi(cl f)O+ = 0+ epi cl f = 0+ cl epi f,

+
the question reduces to whether 0 S C 0+(c1 S) holds for a nonempty convex

set S. But this follows from [17, Theorem 2A(b)] (or [19, Theorem 8.3] in
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the Euclidean case). Next, we work towards the formulas for 1lsc 0 and

*
0 . To this end, let 0, denote the "sigma" function corresponding to

1
the choice h = w{O}' let 0 correspond to an arbitrary h of the sort

specified in the hypotheses, and finally let 02 denote the asserted form

of lsc 0. We have 0, < 0 < 0, by these definitions (since cl f < f),

2 1

so that
* * *

g fee eyt

lsc 0, < 1sc 0 < 1sc 091> 9

2

From Proposition 1 we have

*
=1%o < lgc 0, = g, = wE e

2 2 =V

*
for E = {(y,n)|f (y) + n < 0}. We also have that

01*(y,n) - i?g{<x.y> + &n - cl(x,i)}
= max {0,a},
where

a = sup {<x,y> + &n - (f&)(x)}
£>0,x

s gup  gup f(<x,y> + &y = EECE 2}
£>0 X

= sup {£*(sup{<x,y> - f(x)} + n)}
£>0 X

*
= sup {E(f (y) + n)
£>0

™ wE(st)’

so that

* *
0, =V =0,.

Since 1sc 01 > - o it follows that

*%k *

1sc °1 = cl L 01 = wE =0,.

Sl e
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*
In view of the above inequalities bounding lsc 0 and 0 , it follows that
*
lsc 0 = wE - O = WE.

: *
Next, using the formula 0 = wE' we can write Fenchel's inequality for .

the function 0 as
o(x,§) + WE()'»H) 2 <x,y> + &n.

This is the general inequality asserted. Equality occurs in it if and only if
(y,n) € 00(x,&). Taking into account the special form of © and wE’ this

is equivalent to having either

(@) £() +n<0<E and (£5)(x) = <x,y> + £n
or else

B) £ +n<OsE end bix) = <ny>.

By an argument similar to that used in Proposition 1, one can verify that (a)

is equivalent to
(a') £ () +n=0<E and y€ I(£E)(x).

* *
(One uses the identity (fE)" = £f .) Now consider (b). From (cl £)07 < h < Y .

it follows that

* * + *
by = lJJ{O} EhoZitel 59 = wcl(dom f*) 4

* *
where the last equality is by Lemma 1 applied to f . Hence, h is

*
identically zero on cl(dom f ). From this fact and the observation that

* *
f (y) +n<0 forces y € dom £ , it follows that (b) is the same as .

") f*(y) +n<0=¢g and y € Jh(x). j
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Hence, (y,n) € 30(x,£) is equivalent to having either (a') or (b"')
hold, which is essentially the assertion.

Now we tackle the convexity characterization. Since 0 is
convex on X X R if and only if its restriction to each line in X X R

is convex, let us examine the behavior of the one-dimensional function
OL(A) L O(xxygx)’ = OES A <4
on lines L consisting of points of the form
(x,,6)) = (1-1) (%, Ep) + A(x,E)

for distinct pairs (xO,EO) and (xl,El) in X X R, Each such L can

be regarded as being of one of three types: (i) EO = El = 0; (ii) EO = El # 0;
and (1ii) 60 = (0 and El = 1. The convexity of OL(A) for all lines

L of type (i) is clearly equivalent to convexity of h on X. Next, consider

the function

(f€) (x) if & >0
Ol(x,E) = W{O} (x) if E=0
+ o if £ <O

which is convex because f 1is (see [19, page 35]). Since OL(A) for lines
L of type (ii) coincides with the restriction of cl(x,g) to L, it
f&llows that convexity of OL(A) is automatic on all lines of type (ii).
Now consider any fixed line L of type (iii); that is, let pairs (xO,O)
and (xl,l) be given (notice that Ek = A in this case). Now UL(A)
coincides with the restriction of ol(x,E) to L everywhere, except

perhaps at the point (xO,O) corresponding to A = 0. Since for such an L

the function UL(A) has the value + © for negative A and is known to




it

be convex for positive A, it will be convex on all of R if and only if
either 0. (0) > lim o, () or o (M) =+ x>0,
- L L
A¥0
Now the first of these alternatives is the same as
h(xo) > lim (fA)(xA).
AY0

while the second can easily be seen equivalent to
X ¢ dom f + (-w,l)xo.

It follows that OL(A) is convex on all lines L of type (iii) having the
same X parameter if and only if
h(x ) > sup {lim (fA)(x,)|x, € dom f + (-=,1)x }.
g — ATT1 o
A0
Let s(xo) denote this supremum. We can rewrite it ‘as
s(x) = sup sup {lim (£A)(x,)|x, = x + x, - Bx_ }
°°  x€dom £ B0 A0 S R
= sup {t(xo,x)lx € dom f},
where for each x € dom £
t(x ,x) = sup {1im Af(x + (A-l-B)xo)}
B>0 A0

o gup (1B AT £(x + (A<B)x )}
B>0 At ¥

e sup {1im (B+1) " Le(x+1x)]).
B>0 TAw® i

Now it is not hard to show that

1im (B+1) " LE(xtTx ) = lim T-lf(x+'l’x°)
Theo v Theo

for each B > 0, x € dom f, X, € X. (To see this, let O(T) = f(x+1xo) and




¥ =1im v 20(T). If Yy 4s finite,
oo

lim (B+1)718(1) = 1im [(B+1) " Lr)e[tto(1)]

Theo Theo
= lim [B+1) Y r]elim [T710(D)]
Thoo T
= 1 Y

If y is -, then (B+1)716(T) < T 10(1) implies

lim (B+1) 710(T) <y = -w,

Theo
If Yy is +x, let M >0 be given. We can choose ?.3 B so that
1-19(1) > 24 whenever T > T . Since (B+T)-lT S 1f2 sfoxr T27T,

it follows that
B+1) Lo = (B0 Iy oD ] > (/2 (2 = M

% g whenever T‘Z.?. This shows 1lim (B+T)—19(T) = +o also, completing the
Thoo
E verification.) Using this fact, we have that

-1
t(xo,x) = lim T f(x+Txo),

E
i Thoo
if
; and hence
: s(x ) = sup {lim T—lf(x+Tx )|x € dom £}
| o T4 Y
= sup {lim T-l[f(x+Tx )-£(x)]|x € dom £}
Theo =
= sup{ sup (7 £ (b )-£(x) ]} x € dom £}
0<T<>® o

sup {f(x+x°) - f(x)|x € dom f}

+
(£0°) (x ).

It follows that OL(A) is convex on all lines L of type (iii) if and

0 P AT 7T Y B T A TN Y Aoy 1 T A 3T A0 A Y A b < T e



only if
h(x ) > f0+(x ) YV x €x
o’ - (3 o #

Combining this fact with the earlier ones concerning lines of type (i)
and (ii) completes the proof of the convexity characterization.

Finally, assume X = R" and suppose that 0 1is polyhedral convex.
Since 0 is clearly proper, 0 is therefore closed [19, Corollary 19.1.2]
and agrees with 1lsc 0. From the formula already established for 1lsc O,

it follows that
fE = (cl £)§ for each £ >0 and h = (cl f)0+.

The choice & =1 in the first fact yields f closed, and so the second
fact yields h = f0+. The fact that f is polyhedral is immediate from

the fact that epi f 1is essentially just the intersection of epi 0 with

the hyperplane
{(xi€’U) € Rn X R X RIE’ 1}’

and hence is a (nonempty) polyhedral convex set. Suppose conversely, now,
that f is polyhedral proper convex and h = f0+. Then f 1is closed
[19, Corollary 19.1.2], so the formula for 1lsc O shows that O = lsc O,

ek
hence O 1is closed proper convex. Therefore 0= 0O |, where we know that

*
* 0 if £ (y) +n<o0
g (Y.ﬂ) -
+ ® otherwise .

* *
This shows O is, to within a minus sign, the indicator of epi f . Since

* * * %
f is polyhedral (19, Theorem 19.2], this means 0 1is, and hence 0 = (0 )

is also [19, Theorem 19.2].




We remark that Proposition 1 for the closed case can be deduced

from Proposition 2 by choosing h = fO+ and then dualizing the resulting

facts.

4. The symmetrized separable duality model. Here we derive the

overall structure and prove the basic facts concerning the general symmetrized
model. That is, starting from the primal problem (P) given in 82, we
generate (D) and an associated saddlepoint problem. Then we develop the
associated Kuhn-Tucker theorem, and provide several criteria for strong
duality, including an especially sharp criterion for the finite-dimensional
case.

Our approach, as implied in 82, is to think of (P) initially
as simply a problem of minimizing a convex function f over a convex
cone K, suppressing for the moment the particular structure of f and K.
Symmetric duality for this very general form of the problem dates back to
1963 (Rockafellar [16], see also [19, Theorem 31.4]). Although one can, of
course, regard this as a special case of the original Fenchel duality
theorem, for what follows we prefer to present it instead within the broader
perspective of perturbational duality. In doing this, we follow the general
formulation given in [21]. This has the advantage that many of the general
results from [21] can immediately, or at least fairly readily, be translated
into the present situation. For this reason, in the development below we
limit ourselves to writing down only the most central results for the present
model, leaving to the interested reader the task of stating the many other,
more special results which can be so obtained.

Let Y denote the space paired with X, and let V be another
copy of Y and U be another copy of X. From now on, we regard X as

paired with V and U as paired with Y. Now consider the convex function
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F on X XU given by
F(x,u) = f(x) + 'JJK(X*'U). (4.1)
and the associated minimization problem

min {F(x,0)} , i.e. min{f(x)}. (4.2)
X x€K
From F form a concave function G on Y X V by means of the formula
G(y,v) = inf {F(x,u) + <u,y> - <x,v>}
X,u

[21, eq. (4.17)]. In view of (4.1), a straightforward computation yields that

Gy, v) = b a(y) - £ (y+v), .3)
where

*
K = {v] <x,v> >0, VY xek}.
The problem dual to (4.2) is now formed using G:

*
max {G(y,0)}, i.e. -min {f (y)}. (4.4)
*
y y€K
The "generalized Lagrangian' saddlepoint problem associated with (4.2) and
(4.4) is that which corresponds to the saddle function H on X X Y given
by the formula
H(x,y) = inf {F(x,u) + <u,y>}
u

[21, eq. (4.2)]. Another easy calculation using (4.1) yields that

[£(x) - ¢k*(y) - <x,y> 1if x € dom f

H(x,y) = (4.5)

+ o otherwise ¢




The associated Lagrangian problem is thus

(L) minimax {f(x) - <x,y>}. (4.6)
x€dom f vy ex*

Notice that this problem is essentially linear in y(disregarding the relatively
*

simple cone constraint K ). The abstract Kuhn-Tucker condition (cf. [19,21]),

i.e. extremality or optimality ccwlition, corresponding to problems (4.2),

(4.4) and (4.6) is
(0,0) € JH(x,y).

This is equivalent to the property that the pair (x,y) is a saddlepoint of
H, i.e. a solution of (L), and this is easily seen to be equivalent, in

view of (4.5), to the pair of subdifferential relations
y € 9f (x), -x € DwK*(y). (4.7)

The symmetrized model now essentially follows from the above,
upon choosing f and K as in (2.3) and (2.4) and invoking the information
contained in Propositions 1 and 2. In view of the very general formulation
of Proposition 2, though, we can actually treat with no additional effort
a form of (P) slightly more general. Specifically, we assume henceforth
that f is defined as in (2.3), but with the slight change that, instead
of taking the Uj's to be of the form (2.2), we permit them to be of the

form

(ijj)(xj) if gj S0
oj(xj,gj) = hj(xj) if ﬁj = 0 (4.8)
+o if Ej <0

where h, 1is any given extended-real-valued convex function satisfying

3




+

Vo) by 2 £507 (4.9)

With this choice of f and K, problem (4.2) becomes the primal problem
(P) introduced following (2.3), where it is understood that the oj's
may be of the more general form (4.8), (4.9).
Turning now to the dual, in problem (4.4) we have K* given
by (2.7). By Propositions 1 and 2, formulas (2.8) and (2.9) are valid for
*

d *
wi an °j ’

*
these serve to express f directly in terms of the individual conjugates

*
respectively. When substituted into formula (2.6) for f ,

* * * * *
fiLt Wit f. . The resulting expression for f reveals f as having

o S SRR
structure essentially identical (i.e. "symmetric") with that of £, except
for the roles of i and j having been interchanged. Note that in Q*
also the roles of i and j are interchanged. This shows that problem
(4.4) does reduce to problem (D) of 82, and that this problem is indeed a
symmetric dual of (P).
The reader can easily imagine the saddlepoint problem (4.6)
written also in terms of the additional structure now present.

Consider now the perturbational aspect of the model. Formula (4.1)
shows that problem (4.2) is embedded in a whole class of parametrized problems
u » min {F(x,u)},

p 4
in which the perturbation parameter u measures the amount by which the
cone K and the graph of f have been shifted horizontally in relation to
each other. An examination of (4.3) and (4.4) reveals the (symmetric)
fact that the same type of perturbations are involved with the dual problem.

It is an important fact about perturbational duality that, when there is no

duality gap, the dual optimal solutions serve to describe, in terms
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of directional derivatives and subgradient theory, the sensitivity or
instantaneous rate of change of the primal optimal value with respect to
small perturbations in a given direction u, say. (See [19, Theorem 29.1]
and |21, Theorems 16 and 17)].) Viewed in relation to the specific structure
involved in (P), the above class of perturbations for (4.2) are as follows.
Regarding the cone P as stationary (in relative terms), the epigraph of

fo is translated horizontally, the epigraphs of the fi's are each
translated both horizontally and vertically, and the epigraphs of the fj's
are each both translated horizontally and also subjected to # positive scalar
magnificaﬁion with respect to the origin. A dual optimal solution will,
according to the general theory, usually describe primal problem sensitivity
with respect to any vector combination of the above types of problem

perturbations.

A dual optimal solution y which satisfies the condition

val(Py = val(D) = ~£ (g} €7, FEK, (4.10)

is called a Kuhn-Tucker vector for (P). The importance of such vectors stems

from the following type of result.
PROPOSITION 3. Let y be a Kuhn-Tucker vector for (P). Then
the solutions of (P), if any, occur among the global minimizers of the

function
x =+ H(x,y) = f(x) - <x,y> .
In particular, x solves (P) 1if and only if

f£(x) - <x,y> = inf{f - <+ , y>]
X
and

x € K, <x,y> = 0 .
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PROOF. From the way G and H were introduced above, we have that
G(y,v) = inf {inf {F(x,u) + <u,y>} - <x,v>}
X u

= inf {H(x,y) - <x,v>} .
x

*
For any y € K, it therefore follows from (4.3) and (4.5) that

-f*(y) = inf {H(x,y)} = inf { £ - <+, y>} . (4.11)
x X

Now assume y is a Kuhn-Tucker vector for (P), and write u for the common

optimal value in (4.10). Suppose x solves (P). Then
f(x) =u, x€K. 4
But by (4.10) and (4.11) we also have
* *
u=-f (y) < f(x) - <x,y>, y€K .

Using U € R, we can combine these facts to deduce both 0 < - <x,y> and
0 < <x,y> . Hence 0 = <x,y>, and so it follows (using (4.11) again) that
£(x) = <x,y> = p = dnf{f = <v ;¥>5},
X
On the other hand, suppose that x satisfies

xXEK <xy>=0, £(x)~-<x,y> = inf {E ~ <o, 95} .
X

kit

Using (4.10) and (4.11), we can then write
*
u= =f (y) = £(x) - <x,y> ,

and hence u = f(x). Since also x € K, this shows that x solves (P).
The next result includes an explicit characterization of the

Kuhn-Tucker conditions.

3
i
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PROPOSITION 4. In order that x solve (P) and y be a

Kuhn-Tucker vector for (P), it is necessary that (x,y) solve (L), and

this occurs if and only if (x,y) satisfies the Kuhn-Tucker conditions

) I J * I J I J
(xoox X ) E el P, (yoiy Yy)EP, <(xoox +X )a (yo)y 2y )> =0,

yO € afO(xO)’

) * )

£,(x)) <0< n, fj (yj) <0< EJ.

; *
£ (x)en, =0 Vi€, PP T A O e
yy € 3(n £ (x,) ) vy € B(EED () )

where nifi is to be interpreted as wdom fi whenever ni = 0, and

ijj is to be interpreted as hj whenever £j = 0. Conversely, if (x,y)
satisfies the Kuhn-Tucker conditions just listed and if the cone P is closed,
then x solves (P) and y is a Kuhn-Tucker vector for (P).

PROOF. The condition -x € BWK*(y) in (4.7) is equivalent (using

the»bipolar theorem) to
*
x € cl K, y €K, <x,y> = 0.

The special form of K, cf. (2.4), permits this to be written as the

two conditions

I J I J * L I J
(%% X )€ el P, (Y8 4y )IEP, AX ;% 3% )y (y .,y sy )>=0
o o o o
and

rap, Eerd; ntert, nev.

Now consider the other condition of (4.7), y € 3f(x). It is an elementary




consequence of the additive separability of f that this splits into the

conditions
Yo 5 afo(xo)’
(yiani) € awi(xi.ﬁi). Vi €1,
(yJ:nJ) € Doj(xj,gj), Vj € J.

By the subdifferential formulas established in Propositions 1 and 2, the last
two sets of conditions can be broken down further. Combining all the resulting
facts with the cone information gives the characterization of the Kuhn-Tucker
conditions asserted. Next, the necessity assertion is immediate from the
implication (e) = (f) of (21, Theorem 15]. When P is closed, so is K,
and hence the underlying function F defined in (4.1) is closed convex in
u for each fixed x. Nearly everything in the converse assertion now follows
immediately from the implication (f) = (e) of [21, Theorem 15]. The only
remaining item to prove is finiteness of the saddle value. But it is easy to
check, using (4.5), that if H has a saddlepoint then its saddlevalue must
be finite.

The following corollary corresponds to the classical Kuhn-~Tucker
theorem. The traditional role of some sort of constraint qualification is

played here by the relation
inf (P) = max(D), (4.12)
which is sometimes called "strong duality." We understand (4.12) to mean that
* *
val(P) = val(D) = -f (y) for some y € K . (4.12")

Note that, while the y's fulfilling (4.12') are necessarily solutions to

Smvpem e
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(D), they need not in general be Kuhn-Tucker vectors for (P), cf. (4.10).
This is because the common optimal value in (4.12') could perhaps be -,

COROLLARY 4A. ("Kuhn-Tucker Theorem'') Assume that the strong
duality relation (4.12) holds. In order that x solve (P), it is necessary
that there exist a y such that (x,y) satisfies the Kuhn~Tucker conditions
listed in Proposition 4. When the cone P is closed, this necessary condition
is also sufficient.

PROOF. Let x solve (P) and y satisfy the condition in (4.12').
Since f is never -» , val(P)> - %;since f* is never - ®, val(D)<+ o,
Hence the common optimal value in (4.12') is finite, so that y is in
fact a Kuhn-Tucker vector for (P). Now apply the proposition.

For the necessary condition in Corollary 4A to have substance, we
must provide conditions which guarantee that relation (4.12) holds. The
section concludes with two such conditions. The first is an all-purpose
condition, applicable to the most general spaces.

PROPOSITION 5. The strong duality relation (4.12) holds if
there exist (xo,xI,xJ) € P and EJ > 0 such that

(i) fo is bounded above on some neighborhood of xo;

(ii) for each i € I there exists o, > 0 such that f, < - a

i-— i

on some neighborhood of x.; and

i
(iii) for each j € J, oj is bounded above on some neighborhood

of b4 ’
We remark that when an fi is continuous, the corresponding
condition in (ii) can of course be replaced by the condition fi(xi) < e

Also, when the topology on X, is determined by a norm, it can be shown

3
that the corresponding condition in (iii) can be relaxed to simply requiring

that fj be bounded above on some neighborhood of 5;1

xj.
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PROOF. By [21, Theorem 17), it suffices to ensure that the

primal optimal value function ¢¥(u) = inf{F(x,u)} is bounded above on
X

a neighborhood of the origin. Since by (4.1) ¥ satisfies

inf {£(x) + Yp(xtu)}
X

¢ (u)

inf {f(x-u) + WK(X)}
x

|A

Vp(x) + £(x-u)

for any x, it suffices to have an x € K such that the function u - f(x-u),

is bounded above on some neighborhood of th« origin. The rest of the proof
consist of translating this condition into the form asserted, using the
particular form of f and K given in (2.3), (2.1), (4.8) and (2.4).

The second result along these lines deals rather fully with the
basic case in which all the spaces are finite-dimensional. In 85, as

an application of this result, we shall obtain a new, refined criterion for

the existence of optimal Lagrange multipliers for ordinary convex programming

in R
" "

The relative interior of a set will be denoted by '"ri".

PROPOSITION 6. Assume all the spaces are finite-dimensional
and that val(P)> - ». Then a Kuhn-Tucker vector for (P) exists (and
hence the strong duality relation (4.12) holds a fortiori) if there

exists an EJ >0 and (xo,xI,xJ) € P such that the conditions
(xo,xI,xJ) € ri P,
Xx € ridomf ,
o o

x, € ri dom fi and fi(xi) < 0,

i

€ £, ri dom f

3 3 - i

Ej >0 and x

(4.13)

(4.14)

(4.151)

(4.163)
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hold for all i € I and j€J. Moreover, when any or all of the problem

elements P, fo’ f fj are polyhedral, corresponding weakenings in conditions

i’
(4.13) through (4.16) can be made as follows:

(x,x',x)) €2, (4.13%)
e 1
X, dom fo, (4.14")
L}
£.) 20, (4.15')
h, = £0%, £, >0, x, € dom £.£
h| s R b i
(4.16",)
here f£,E, is £,00 if E, =0 :
where f.£. is f, i = 0.
Jieg j J
PROOF. Since the hypotheses entail finiteness of u = val(P)
and since the optimal value in (D) cannot exceed 1, it suffices to
prove that
* *
u =-f (y) for some y €K . (4.17)

We shall first provide an argument leading to (4.17), introducing hypotheses
as needed, and afterwards indicate why the condition in the proposition
guarantees the hypotheses needed by our argument. We begin by scanning all

the functions fo’ wi’ (o] involved in f (given by (2.3), (2.1), (4.8), (4.9))

k)
to see which are polyhedral and which are not. Note that wi is polyhedral
if and only if fi is, and (by Proposition 2) Oj is polyhedral if and

only if fj is and also hj = fj0+' By a suitable relabeling (permutation)

of the coordinates of X, we can partition it as X = Xl X x2 in such

a way that f can be written in the form

f(x) = f(xl.xz) = p(xl) $ q(xz), (4.18)
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where p consists of all the polyhedr»l terms of f and q consists

s e A4 S

of all the nonpolyhedral terms. Next, effectively extend the domains of

definition of p and q to all of X by introducing functions p and
q via ' - %
P(x) = P(x,x,) = plx;) (sz) (4.19)

and i

q(x) = ﬁ(xl.xz) = q(xz) (Vxl) (4.20)

fa b

For definiteness in what follows, we suppose that P 1is polyhedral. Then
K is, too, and so wK(x) = wK(xl,xz) is also (even under the relabeling of

variables, since that operation is accomplished via a linear transformation).

We can now write

E u = inf {f(x) + wK(x)}
X

= inf {p(xl) +q(x,) + WK(xi,xz)}
: (x15%,)

= 1inf {p(xl,xz) + q(xl,xz) + wK(xl’XZ)}
(x,,%x,)
1" 2
X 3
= -[+H) +4q] (0,0). (4.21)
Since p + bg 1is polyhedral, by [19, Theorem 20.1] we have

& Pl ) - * oK
[+ v +4q] (0,00 = (p + V) o4 (0,0),

where the infimal convolution on the right is actually attained, provided the

1 hypothesis

¢ # dom(p + WK) N ri dom q (4.22)

is satisfied. This means, according to (4.21), that

g | b =) (e + G gy ] (4.23)
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for some w = (wl,wz) belonging to the space Y = Y1 x Y2 paired with

X = Xl X Xz. Since (4.20) yields

*
q (w2) if W, = 0

k ~£
qQ W) =q (w,w,) =
+ otherwise

and since | >-o , it follows from (4.23) that
0 and § ; 4.24
vy and q (wl,wz) =q (wz). (4.24)
By [19, p. 179], we also have
~ * % *
(P + “pK) (0’-w2) =P o wK (0,-“2),
where the inf-convolution on the right is attained, provided the hypothesis
¢ # dom p N dom Ve (4.25)
is satisfied. This means, according to (4.23) and (4.24), that
ok * *
M= =lp (z7,2)) + ¥y (0-2;,-w,-2,) + q (w))] (4.26)
for some z = (zl,zz) in Y. Since (4.19) yields

* 4
P (21) if z, = 0

k ok
p (2) =p (zl,zz) =
+ o otherwise

and since u >-o , it follows from (4.26) that
0 and 3 o
z, and p (z,2,) =p (z;).
From this, (4.26) can be rewritten as
* e * ) *
wo=-=[p (z2)) +q (w) + Vg (=z15=w,) 1. (4.27)

Now notice from the additive separability in (4.18) that

f*(y) = f*(yl.yz) - p*(yl) + q*(yz).
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Using this together with the fact that
*
Y = Yo = Yex(=2),
we can rewrite (4.27) as
*
= -[f (y) + ‘PK*(Y)], Y= (zl’wz).

*
Using W >-® once more, we obtain y € K for this y, and so (4.17) is

established. This argument used (4.22) and (4.25). Since
dom(p + Y) = dom p N dom Y,
it is clear that

¢ # dom p N dom wK N ri dom q (4.28)

is hypothesis required for our argument. In the event that k is not
polyhedral, we simply group the term wK with { rather than p and then

mimic the above argument. The hypotheses required for this are

¢ # dom p N ri dom(y,+ q)
and

¢ # ri dom Y N ri dom q.
By [19, Theorem 6.5], these are equivalent to the single hypothesis
@ # dom p N ri dom ¥ N ri dom q. (4.29)

To finish the proof, it remains only to check that the condition
assumed in the proposition amounts to either (4.28) or (4.29), according to

whether P is or is not polyhedral. Since K = P X¥Q, where Q is relatively

open,

dom Y =P X Q and ri dom ¢K = riP xQ.
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Now consider the remaining sets involved in (4.28) and (4.29). By
. formulas (4.18) - (4.20), together with the additive separability of P

and . q in terms of the functions fo’ wi, (o] the issue reduces to deter-

j)
minimg formulas describing the sets dom wi’ dom 0, and also their

3

relative interiors. But (2.1) yields
dom 'Pi - {(xi’gi)'f‘i(xi) + Ei S 0}1
and so by [19, Lemma 7.3 or Theorem 6.8] it follows that
ri dom Y, = {(xi,Ei)Ixi € ri dom £, fi(xi) 4+ Ei < 0}.

Also, according to (4.8) and (4.9) we have

éom o. = {(x.,£.)|E. >0 and x, € dom f.&. or .,=0 and x, € dom h.}
3 385 IEJ 3 3557 5 3 s ol

so by [192, Theorem 6.8] it follows that

ri dom oy = {(xj,Ej)IEj > 0, X € Ej dom fj}‘

From this information it is easy to see that the condition in the proposition
is equivalent to either (4.28) or (4.29), depending on whether P is or
is not polyhedral. This concludes the proof.
Alternative conditions which ensure (4.12) can be developed by
combining [21, Theorem 17] with the various criteria given in [21, Theorem 18],
much as in the proof of Proposition 5. This we leave to the interested reader.
Finally, we remark that there are other general results which hold
for the present model by virtue of its fitting the general perturbational
duality framework. We refer the reader to [21, espceially §7], from which

it is possible to deduce these further results concerning the symmetrized model.

i.g-__..,..‘., P——
T
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5. Specialization to ordinary programming: comparison with

the traditional Lagrangian model. We now analyze the symmetrized model

of 84 in the most important case,
I * 1
J=0¢ ,P= {(xo,x )|xo = xi,\/i €T}, P = {(yo,y )|yo + % Y, ¥ 83y YN, 1)

to see how it compares with the usual duality model for the ordinary

convex programming problem
i €
®) mln{fo(xo)lfi(xo) <o, Vier1}.

We shall sée that the resulting symmetrized model is technically distinct
from ordinary duality, yet closely related and in fact, under generally mild
conditions, essentially equivalent. The symmetrized model thus provides an
alternate means of obtaining facts concerning the ordinary convex program.
In particular, we establish in this way a new, sharpened existence theorem
for optimal Lagrange multipliers in the finite-dimensional case. We also
derive (directly) under minimal assumptions the classical Kuhn-Tucker

Q optimality conditions for the case of nondifferentiable, not everywhere
finite functions in general spaces. As an illustration of the delicate
interrelationships between the ordinary and the symmetrized models, we
conclude with a discussion of the case of homogeneous constraint functions.

This extends recent work of C. R. Glassey concerning "explicit duality"

il et s

for such problems.
By the "ordinary duality model' we mean the trio of problems

consisting of (Po) together with its so-called Lagrangian dual problem

(Do) ?ax { inf {fo(xo) + z nifi(xo)}}
n >0

x €C 1
o




and Lagrangian saddlepoint problem

) ﬁgnimax {fo(xo) + ) n, £, (x) 3.
x €C I I
onriin >0

We use the notation

= n = = €
C Co II.Ci % Co dom fo, Ci dom fji\ji 1

and make the trivial nondegeneracy assumption that C # @. In the case

of functions not everywhere finite, it is essential to observe the restriction
X € C in both (Do) and (Lo).
This trio arises from the general perturbational duality model

by choosing

£f(x) 4if £(x) <y Yier
oo i*"o i (5.3)
+ @ otherwise .

Fo(x°9u1) 3 {

Indeed, gér {Fo(xo,O)} is exactly (Po), and when we generate G, and Ho

from Fo by means of the formulas

I 3 | >
H (x ,n) = iunIf {F (x,u") + <u”yn™>}

I I
G, (n7,v)) = %&f {Ho(xo,n ) - <xb,vo>}
prescribed in [21, see eqs. (4.2), (4.15)], we easily obtain by (5.3) that
&
£.(x) + % ngf,(x) if x €C and n 20

Ho(xb,nI) =4 - if X € C and nI.l 0 (5.4)

+ ® if xoﬁc




I I
G, (n",v ) néf £ () +]Inf(x)-<x,v>}tf n >0 (5.5)
X, C I
=100 otherwise .

From these, it is clear that the problem max {Go(nI,O)}
I
n
coincides with (Do) and the problem m%nimax {H(xo,nI)} coincides with (Lo).
o nI
Now consider the form taken by the symmetized model of §4 under

the particular choice (5.1). The primal problem (P) becomes

®) min {f_(x )| (x_,x',E") such that f (x) <0 Vier,

Vie i 8

and EI = 0, X, = X

The extra variables (xI,EI) here are of course completely determined and
could be suppressed without harm. Nevertheless, for the purpose of main-
taining a clear distinction between the ordinary and the symmetrized model,
it is useful to keep in mind, at least in a formal way, the presence of
these additional variables. With the dual and Lagrangian problems (Ds)

and (LS), analogous distinctions actually can make a difference in terms
of solvability.

The dual problem (D) when specialized according to (5.1) becomes
+ * * I
- 1 > =
@) min {£_"(y ) + % (En) " 20,y + ; y = 0},
here f.n, is £,0° wh 0
where f.n., is f, whenever n. v

The result to follow shows that, under a usually harmless assumption, we
can substitute for (D;+) a simpler dual problem not requiring the recession

* +
functions fi 0 :




* * I
- min {£ () + % (£, n)G)In" 20, y + { y, = 0},

*
where fi ni is w{O} whenever ni = 0.
The result also'provides relatively mild conditions under which solving
(D;*), or even the simplified form (Ds)’ is actually equivalent to solving
the ordinary dual (Do).
PROPOSITION 7. (a) Assume that the effective domains of the

functions satisfy
cocci,VieI (5.6)

+'.
(see (5.2)). Then the optimal values in (Ds) and (Ds) coincide. Moreover,

+
any solution of (Ds) is a solution of (Ds) and conversely, if (yo,yI,nI)

+ b
solves (Ds) then (yo,yI,nI) solves (Ds), where

0, 1€1
o

yo 7 yo x % yi and yi %
o

I+ =1 \\Io.
(b+) Assume any hypothesis which will ensure that, for each nI >0,

for I = {ieII"1=°}’

~(E + [y () = min {557 (7)) + L ) Grp by, + Ly ol

1 (5.8%)

. * *
where nifi is wc and fi ng is fi 0+ whenever n, = 0.
i

+ il
Then the optimal values of (Ds) and (Do) coincide. Moreover, if (y_,y ,n)
solves (D:) then nI solves (Do)’ and conversely, if nI solves (Do) then
Dol +
there exist ¥, and yI such that (yo,y s,N" ) solves (Ds)

(b) Assume any hypothesis which will ensure that, for each anZ 0,
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* * *
=, +] n,6) (v) =min {£ (v ) + Z (f, n)d Gy, + ; y, = v .}

Iy + - (5.8)
where I, = {i € Ilni > 0}, :
and assume that (5.6) holds as well. Then the optimal values of (Ds) and -
I

(Do) coincide. Moreover, if (yo,y ,nI) solves (Ds) then nI solves

(Do), and conversely, if nI solves (Do) then there exist Yo and y1 such
that (yo,yI,nI) solves (Ds).
PROOF. Observe first that any collection wl,...,wm of proper convex

functions having lower semicontinuous hulls somewhere finite satisfies

inf{] ¢;} > inf {clp }

Xo Xo
*
= -(Jclyp) (0)
* - (5.9)
= - cl(p, B...0,")(0)
> -(p."0...00 *)(0
> -(p; 9...0 *)(0) . _
The second equality here follows by the same argument as given in [19,
*
bottom p. 145]. Using (5.9) and then W{o} z‘fi 0+, we have
inf{fo+Xnifi} = inf{fo+§wc +Jnt} (5.10)
C I %o gl Aol M
>

* * 3
~inglE ") + ] (60D 6 + DGy, = 0
%, ty I

| v

* *
<knsle "y ) 4 L U G0Ny, b ) gm0l
L I+
for each nI > 0. This establishes the general relations
+
val (Ds) < val (Ds) < val (Do). (5.11)

* ®
Now assume condition (5.6). Then wc < Y; » and hence f, ot 2 o by
i 0

Lemma 1 in §3. If (yo,yI,nI) satisfies nI >0, ¥e + X - 0 and
I




*
o € dom fo , then we can write

* * * * 4
o0+ 1 ey 2 e e+ e 0y
IO I0
SUNE ROy ) fo*0+(IZ yy)
%L ks (5.12)
2 i)

T o
£ G )+ ] Y030y -
Io

* 4+
The second inequality is by the subadditivity of fo 0 (Lemma 1 shows it is

a support function), while the third inequality follows from ¥ € dom f

o
* 4+
and the definition of recession function (see ff.(2.2)). Since w{O} Z_fi 05

equality must hold throughout (5.12). Hence

* * + * % - = * o
£ 0+ g0 ) FIE MG = G Pl G + ] LE, )G,
Iy T, Ly 1

where ;o + ii = (yo+ Z yi) + X ¥z = 0. This shows that the optimal
38 Teg

; 4
values in (D_) and (Ds) coincide and that if (yo,yI,nI) solves (D) then

the (yo,yI,n ) induced as in (5.7) solves (Ds)' On the other hand, suppose

O 4 N

that (yo,yI,nI) solves (DS). If the (common) optimal value is - ®, then
+
trivially (yo,yI,nI) also solves (Ds) . So suppose val(Ds)> - o, Then
* 4
necessarily " 0 for each 1i € Io’ so that w{o}(yi) =0 = (fi 0 )(Yi)

's. Hence (yo,yI,nI) yields the same value in the objective function

for such 1i
of (D:) as it does in (Ds)' Since the two optimal values agree, this vector
must also be optimal for (D:). Now assume condition (5.8+). This yields

equality,with attainment by some y's, in the first inequality of calculation

(5.10). The conclusions of part (b+) are immediate from this. Finally,

assume conditions (5.8) and (5.6). These yield

g oy gt
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inf{f + ] n )= dnflf +Jy, +]n;tl

, c i Xo I, %

E, inf{f + ) n £ }
A ] I+ ii

-
.

* *
- min{f (v ) + ] (£, n) Gy + ]y, =0}
) I+

for each nI > 0. The conclusions of part (b) are immediate from this.
Condition (5.6) can always be met by simply redefining fo (if

necessary) to be + © outside C. The new fo will then satisfy

C° = CC Ci,\/i € I. The only adverse effect likely from this redefinition

*
is the possible complication of the formula for fo . This can occur, as

for example in the case of programming subject to homogeneous constraints
discussed at the end of this section.

Conditions (5.8) and (5.8+) are somewhat more restrictive hypotheses
but still relatively harmless. Indeed, generally speaking, they are easier
to satisfy (i.e. weaker) than a constraint qualification. For example, ac-
cording to [21, Theorem 20(a)], (5.8) is satisfied in general spaces if there
exists an X such that each of the functions fo’ fi(i € I) is finite
at X and all except possibly one of them are bounded above on some

neighborhood of X, Alternatively, if X0 = Rn, (5.8) is satisfied whenever

N A
0 #ric, @uci,

where here the relative interior operation can be deleted for any and all of
those functions fo’ fi (i € 1) which happen to be polyhedral [19, Theorems 16.4,
20.1]. Other conditions sufficient to guarantee validity of (5.8) and (5.8+)

in both finite- and infinite-dimensional contexts can be formulated using

[21, Theorem 20], [6, §84e and 9c] and [22, Theorem 5.6.2]. For a somewhat

tangential yet related discussion of the consequences of (5.8), see [5].




We remark that in the presence of (5.6), it can be proved that
condition (5.8) is equivalent to condition (5.8+).

From Proposition 7(a) it follows that, when (5.6) can be arranged
(without adverse effects from complicating fo*), we might as well deal
with the simplified symmetrized dual (Ds) rather than the technically
correct version (D:). It should be noted, though, that in so substituting
(Ds) for ID:) , we will in general be discarding certain unbounded portions
of the solution set of (D:). But this is immaterial in terms of the
actual solvability of the dual problem, so long as (5.6) holds (cf. (5.7)).

In connection with Proposition 7(a), we remark that even without
condition (5.6) an asmptotic relationship holds between (D:) and (Ds)'
Namely, by using [17, Theorem 3b(e)] one can show that to each feasible
solution (yo,yI,nI) of (D:) there corresponds a net (yo,y;,ni) of vectors,

indexed by a, satisfying

I g
n,>0, n =1limn , 0= lin(y + % P,

and

* * * *
=t )+ ; (£, 0D < - Lim [£) (v ) + ; (£, ny )0y I

If (Ds) were known to be normal (i.e. if the perturbation function

corresponding to (Ds) satisfied (usc y)(0) < y(0)), it would follow that
1(0 ) = val(d')
val(D_ va #

and hence that each solution of (Ds) is a solution of (D;-).

We turn our attention now towards a comparison of Kuhn-Tucker
theories associated with the symmetrized and the ordinary models. For
the ordinary model this involves the traditional Lagrangian function Ho
given in (5.4), while for the symmetrized model it involves specializing

the function H given by (4.5) according to (5.1). This yields Hs. defined




as follows:

-

R ok i I | 1-:3 b .
= - >
HS(xO’x '€ ’yovy 5N ) fO(xO) <(x09x ,E ),(Yo-)’ >N ) (5.13)
if the "x-conditions" 2

€ €
x €dom £, £ (x)+§& < o‘\h I

and the "y-conditions"

I I
N € R, ¥, + X yi =0
I

are both satisfied; Hs(x,y) = - ®» if these x-conditions are met but the
y-conditions fail; and Hs(x,y) =+ o jf the x-~conditions fail. The
Lagrangian function Hs plays the same role for (Ps) and (D:) (and also
(Ds) when (5.6) holds) as Ho plays for (Po) and (Do)' In particular, the
pairs (xo,xI,EI),(yo,yI,nI) characterized in Proposition 9 below as the
solutions to the "symmetrized" Kuhn-Tucker conditions are precisely the
saddlepoints of the minimax problem (Ls) determined by Hs.

The Kuhn-Tucker vectors for (Ps) are, according to (5.1) and

the general definition in 84, those (yo,yI,nI) which satisfy

nt20, y +Jy =0 (5.14a")
I
and
* * 4 * +
val(P ) = ~[f_ ~(y ) +120 (£, 00 () +IX (£, n) () ER, (5.14b")
+

where as usual we write Io = {{ € I|ni = 0} and L =1 \‘Io' In
particular, they are solutions of (D:) . Also of interest are the vectors

which satisfy the stronger conditions

I
n_>_0,yo+§yi-0, y, =0 \/1610 (5.14a)

i et it i " o B i aalten Gt € b J
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and

val() = -, ") +12+ (£, )y )] € R. (5.14b)

Vectors (yo,yF,nI) satisfying the latter pair of conditions will be

called strong Kuhn-Tucker vectors for (P ). They are contained in the

solution set of the simplified dual (Ds). The Kuhn~-Tucker vectors for
I

(Po) are the n~ which satisfy

I
n" 20, val(P) = inf {f + i nf} € R (5.15)

c
They are also called optimal Lagrange multipliers for (Po). The next
result describes the interrelationships among these objects.
PROPOSITION 8. Let nI > 0 be given, and write I_= {1€ Ilni > 0}

and Io = I\\\I+. The implications
+
(b) = (b') = (a)

hold among the conditions below. Furthermore, if (5.8+) holds then (b+)
is equivalent to (a), and if (5.6) holds then (b) is equivalent to (b+).
If both (5.8) and (5.6) hold, the three conditions are mutually equivalent.
(a) nI is a Kuhn-Tucker vector for (Po)’ i.e. (5.15) holds;
(b+) there exist - A and yI such that (yo,yI,nI) is a
Kuhn-Tucker vector for (Ps), i.e. (5.14+) holds.
(b) there exist ) 4 and yI such that (yo.yI,nI) is a strong
Kuhn-Tucker vector for (Ps), i.e. (5.14) holds.
PROOF. Note first that to go along with the general relation
(5.11) established above we also have

val(Do)<§ val(Po) = val(PB). (5.16)

*
The implication (b) = (b) 4is trivial from the fact that f L 070 =o0.
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Suppose (yo,yfnl) satisfies (5.14+). By the estimate (5.10) together
with the general inequalities (5.11) and (5.16), it follows that nI
satisfies (5.15). Hence (b+) = (a). Next, suppose nI satisfies (5.15)
and that condition (5.8+) holds. Then by Proposition 7(b+), there exist

» and yI such that (5.14+) holds. Hence, (a) = (b+) in the presence
of (5.8+). Now suppose (yo,yI,nI) satisfies (5.14+) and that condition
+5.6) holds. Define io and ?I as in (5.7). By Proposition 7(a) it
¢ollows that (?o,yl,nl) satisfies (5.14). Hence, (b+) = (b) in the
presence of (5.6). The final assertion follows by combining what has already
been proved, using the fact (remarked earlier) that (5.8+) is equivalent to
(5.8) in the presence of (5.6). Alternatively, apply Proposition 7(b).
This completes the proof.

Propositions3 and 4 and Corollary 4A from 84 can all be specialized
according to (5.1), of course, to yield comparable assertions concerning the
trio (2), (), (L_). We will not write all of this down, though. Instead,
we focus on just that part of Proposition 4 characterizing the Kuhn-Tucker
conditions, to see what they look like for (Ps)'

PROPOSITION 9. A pair of vectors (ﬁo,xI,gl) and (yo,yI,nI)
satisfies the Kuhn-Tucker conditions for (Ps) if and only if it satisfies

the conditions

x, = xi\/i.e I, EI =0, - + % " 0, (5.17a)

Y, € A (%)), (5.17b)
£,(x) <0<n and £ (x)m =0Vier, (5.17¢)
v, € Wy, fi(xo) \ie I, and vy € n,of (x ) Vie i Ban

where I = (i€ 1|n1 =0} and I =1I\I. When (5.6) holds, it is

D et

)
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possible to satisfy the preceeding conditions if and only if it is possible

to satisfy the simplified conditions obtained by replacing (5.17d+) with
\/
= € €
y =0 7i€1 and y €ndf (x) Yie€1,. (5.174)

PROOF. The first assertion is immediate from Proposition 4,

in view of (5.1). Now observe that

3(“1f1)(*b) =niafi(x°) whenever mn, > 0 and afi(xo) $#0,
and that

0 € chi(xo) whenever Xy € Ci .
I, I 1 e

From these facts it is clear that any pair (xo,x S (yo,y ,N") which
satisfies .5.17) must also satisfy (5.17+). Now suppose we have such a
pair satisfying (5.17+), and assume that condition (5.6) holds. Define
(io,il,nl) as in (5.7). It is clear that the given (xo,xI,ﬁl) together
with (9°,i1,n1) satisfy everything in (5.17) except possibly requirement

(5.17d). But we have X S Co (=l o1 from which

il

awci(xo) < cho(xo)

follows easily. We also have the easy fact that
afo(xo) +cho(xo) C afo(xo).

Combining this information yields

€ Of_(x ) + ] 3y, (x)

S

CAf (x) + ) oy (x)
Io (o]

C of (x ),




and so the proof is complete.
The extremality conditions just derived for the symmetrized model,
at least in the simplified form (5.17), are extremely closely related to the

well known, classical Kuhn-Tucker conditions. In order to make a precise

comparison between the two in the present context, we now derive the classical

Kuhn-Tucker conditions. These are obtained as part (b) of the following result,

which extends [19, Theorem 28.3 (see 1972 edition)] to the general case.
PROPOSITION 10. (a) In order that X, solve (Po) and nI be
a Kuhn-Tucker vector for (Po), it is necessary and sufficient that (xo,nI)
solve (Lo).
(b) 1In order that (xo,nI) solve (Lo) it is sufficient that (xo,nI)

satisfies the conditions

£,(x)<0<n and £ (x)n =0V i€l (5.18a)

and

0 € df (x)) + ] nof (x), (5.18b)

Ly

where I+ = {1i€ Ilni >0} . When (5.6) and (5.8) hold, these conditions
are also necessary.

PROOF. Most of part (a) follows immediately from the equivalence
between (e) and (f) in [21, Theorem 15], since the function Fo defined
in (5.3), which underlies the ordinary duality model, is clearly closed
convex in uI for each fixed X . The finiteness of the common optimal
value for the necessity half of (a) is built in to the definition of
Kuhn-Tucker vector. Finiteness in the sufficiency half follows from the fact
that if (xo,nI) is a saddlepoint of H  then x €C and nl‘i 0, in
which case the saddlevalue is finite. This is easy to deduce directly from

(5.4). (It requires our nondegeneracy assumption C # @#.) Now let us

A A A g AP S SO




T

— =y

establish (b). As just noted, if (xb,nI) is a saddlepoint of HO
then necessarily X, € ¢ and nI > 0. From this it follows, using (5.4),
that the saddlepoint condition is equivalent to the conditions (xo (= o5

nI‘Z 0 and)

I Gy-npef,x) <0, Y @20,

and I

o) + I myfyn) < £, + Iy ), V % ec.

Now it is easily seen (in the presence of X, (= (6 nI > 0) that the

first of these is equivalent to (5.18a) and that the second is equivalent to
0 € d(f + g n £,

where "1f1 is interpreted as V¥ whenever n, = 0, or in other words, to

Ci i

the condition
*
€
O € GCE ® )b # n ), (5.18b )
16 i I,
where Io ={i€ Ilni = 0} and I+ = I‘\\Io. The remaining analysis concerns
*

breaking (5.18b ) down further. Suppose (xo,nI) satisfies (5 together

with (5.18b). Then

0 € 3f_(x) +IX {0} +IE+niZ)fi(xo)

o
(x,) +12 n df, (x)

+

CAF (x) +) 3
oo s Ci

CAUE, + ] W, + ] nf)x)

W U 7

*
shows that (5.18b ) holds. The first inclusion here follows trivially from

the fact 0 € 9y (x_ ), while the second is an elementary fact concerning the
Ci o
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subdifferential of a sum (see, e.g. [1Y, proof of Theorem 23.8]). This

establishes the sufficiency part of assertion (b). Now assume conversely
I . *

that (xo.n ) satisfies (5.18a) together with (5.18b ) and that conditions

(5.6) and (5.8) hold. By (5.6) we have that

.

f +Yy, +Inf =f +Jn;f ,
o C i iti
A A T S

*

and hence (5.18b ) simplifies to
€

| 0 € A(f + ) n e G .
t Ly
From (5.8) it follows by an elementary argument that

9 -

8 +IZ B E M(x ) = Af (x ) + ) ndf (x) .
+ Ly
(Such an argument can be found in [5, end of §82].) Combining the last two
facts, we obtain (5.18b), thus completing the proof. 5
It is clear that the ordinary Kuhn-Tucker conditions (5.18) are

satisfiable if and only if the simplified conditions (5.17) corresponding

to the symmetrized model are satisfiable. Similarly, conditions (5.l7+)
are satisfiable if and only if conditions (5.18+) are, where by (5.18+) we
mean (5.18a) together with

0 €3f (x) + ) W,

+
) i(xo) +IX n;f, (x ). (5.18b")
(o]

+ :

COROLLARY 10A. ("Kuhn-Tucker Theorem") If conditions (5.6),

(5.8) and the strong duality relation inf(Po) = max(Dn) hold, then in order

that x, solve (Po) it is necessary that there exists an nI which together

with x  satisfies the Kuhn-Tucker conditions (5.18). Conversely.

if (xo,nI) satisfies (5.18), then X, solves (Po) and nI is a Kuhn-Tucker

vector for (Po).
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PROOF. The converse assertion is immediate from the proposition.
Suppose now that 1nf(P°) = max(Do) = H. From (5.5) it is clear that no
nI can yield value + « in (Do)’ so since (Do) has a solution we must have
B < 4o, (This uses our nondegeneracy assumption C # @; see (5.5).) Suppose
(Po) has a solution. Then U > - © | because (5.3) shows that no X,
can yield value - «® in (Po)° Hence Y must be finite, and the hypothesized
solution to (Do) is actually a Kuhn-Tucker vector for (Po). Now apply the
proposition.

Notice that Proposition 10 and Corollary 10A are the analogues. for the
ordinary duality model, of Proposition 4 and Corollary 4A. For completeness,
we provide the analogue of Proposition 3. This extends [19, Theorem 28.1]
to the general case.

PROPOSITION 11. Let nI be a Kuhn-Tucker vector for (Po). Then
the optimal solutions to (Po), if any, occur among the global minimizers
of the function
{ £ (x) + g nf(x) if x €

b M Ho(xo.nl) =
(+® otherwise .

In particular, X, solves (PO) if and only if

x  solves inf {f + ) n, £, } (5.19)
C I
and also satisfies
. = ol .
fi(xo) £0<n, and fi(xo) n, =0, \/ $€ 1 (5.20)

PROOF. We can obtain this result very succinctly as a corollary
to Proposition 10, as follows. Since nI is a Kuhn-Tucker vector, the proof
of Proposition 10 shows that X solves (Po) if and only if (xo,nI)

*
satisfies (5.18a) and (5.18b ). But these conditions are the same as (5.20)
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and (5.19), respectively. An elementary, direct proof can also be given.
This we leave to the reader.

Next, we discuss constraint qualifications. This is the term
usually given to any of a variety of conditions which guarantee the
existence of a Kuhn-Tucker vector, or at least guarantee the strong duality
relation (4.12) for the model under study. Propositions 8 and 7 imply
that any result along these lines for the symmetrized model (involving either
(D;+) or (Ds)) yields the corresponding result for the ordinary model.
Sharp conditions under which the converse implications hold are provided
also in Prépositions 8 and 7. Notice in particular that when conditions
(5.6) and (5.8) both hold, it makes no difference for which of the (three)
models one establishes such results. That is, under these conditions
it is immaterial whether one derives the result for (Po) and (Do)’ for
(Ps) and (D:) , or for (Ps) and (Ds)'

This raises the question of whether one can generate weaker
(hence better) constraint qualifications by working with the symmetrized
model. 1In general the answer is no, and the reason is as follows.
Constraint qualifications are intimately tied up with the optimal value
function's being bounded above on some neighborhood of the origin in U,
the space of perturbations (see [21, §. ). Now the U involved in the
symmetrized model is X0 X XoI X RI, since the model includes horizontal
translatijons of the functions fo’ f,(i € 1) as well as vertical translations

i

of the fi's. On the other hand, U for the ordinary model is simply

RI, since only the vertical translations are involved. So if Xo is
infinite-dimensional, it is generally more difficult to ensure the boundedness
property for ¢s, the optimal value function for (PS), than it is for

¢;, the optimal value function for (Po).

Gt
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To illustrate, consider the form taken for (PS) by the all-

-purpose constraint qualification presented in Proposition 5. It is that

there should exist an X, satisfying both (1) fo is bounded above on
some neighborhood of X s and (2) for each i € I there exists an

a, > 0 such that fi < - o, ocn some neighborhood of X, This qualification

it
is essentially based on applying [21, Theorem 18(a)] to Fs, as an in-
spection of the proof of Proposition 5 quickly reveals. It guarantees
an optimal (yo,yI,nI) for (D:) , where the component nI is optimal for
(Do) by Proposition 7 (see the estimate (5.10)). By contrast, applying
the same tool (21, Theorem 18(a)] to FO yields a considerably weaker (hence
better) constraint qualification, namely, that there should exist an X,
in dom fo such that fi(xo) < 0 for every i € I (the so-called Slater
condition). The latter condition, though weaker, does however have the
countervailing aspect of guaranteeing only an optimal nI for (Do).
Lacking further assumptions, it is not enough to ensure in general the
existence of an "optimal" pair yo,yI which, together with nI, will
solve (D:) ; condition (5.8) or (5.8+) would typically be required for
that (see Proposition 7). 1In situations where not both (5.6) and (5.8)
hold, there is then a certain tradeoff: constraint qualifications for the
ordinary model are generally weaker, but the conclusions implied are not
as strong as for the symmetrized model.

In the case Xo = Rn, it turns out that the general difficulties
mentioned above do not apply. This is due in part to the availability of
the considerable arsenal of special facts concerning relative interiors.
Combined with the additive separability structure which is the distinguishing

feature of the symmetrized model, this permits the following particularly

refined existence result. It extends slightly Rockafellar's theorem
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[19, Theorem 28.2], which already refined the Slater condition to handle

affine functions.
PROPOSITION 12. Assume X = R" and val (P) > - = In order

that there exist a Kuhn-Tucker vector for (Ps) (and hence a fortiori a .

Kuhn-Tucker vector for (Po)) it is sufficient that there exists an xo

satisfying the conditions

X € ri dom f (5.21)
o o

and

e i d st i et b A gl ol A b o

€
X ri dom fi A fi(xo) <0 (5.221)

for each i € I. Moreover, when any or all of the functions fo, fi(i € I)
~re polyhedral, the corresponding conditions (5.21), (5.221) can be

weakened as follows: s

T T O P L P R VT L g Ty I S T v

x, € dom f_, (5.21") 2 .
fi(xo)<£ 0. (5.22;)

PROOF. Proposition 6 specialized according to (5.1) yields a
i Kuhn-Tucker vector (yo,yI,nI) for (Ps). By the implication (b+) = (a)
of Proposition 8, the component nI is a Kuhn-Tucker vector for (Po).
We conclude this section with a brief discussion of the case in

which all of the constraint functions are (translates of) homogeneous

.

functions. That is, we assume now that each fi has the form
fi(xo) = hi(xo—ai) - o, (5.23)

where h1 is positively homogeneous of degree one and is assumed to be

closed. Now it is easy to check that a closed proper convex function is .

homogeneous if and only if its conjugate is an indicator (i.e. assumes only
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the values 0 or +x ), Hence,

for some nonempty closed convex set Di’ and in fact one has
Di > {Yo € Y°l<x°:y°> < hi(xo)’ on € xO}
= 9h, (0)
(cf. [19, Corollary13.2.1]). From this it is easy to compute that
f . ) = ( + 24
(£, n))G ) = wniDi Yo+ <a;,y7,> + nga, (5.24)

tor any ny > 0. Here, for notational convenience we use the value
n; = 0 to represent the case of 0+, e

f *0+ + >

(£, 0)(@) = (yy) + <a;,y >.

0D,
i

Due to formulas (5.23) and (5.24), the various problems treated

earlier in this section assume the following form:

(Po) min{fo(xo)lhi(xo—ai).g oy \/ i€ 1};
(D) mex { inf {f (x ) + ) n.[h,(x -a,)- a,]}};

o nI>0 X,€C © © % 5 e R ¢ i

o * I - \\’/ : €
() -min{f_"(y ) + §[<ai,yo> +nolin” 20,y + ;yi 0, y; €nDd, V i€TI},

; + B
where niDi is 0 Di whenever ni 03
4+
same as (Ds) , except for niDi being
interpreted as ODi = {0} whenever Ry ™ 0.

In a recent paper [2], C. R. Glassey essentially argued that solving

I
(D ) 1is equivalent to solving the projection of (Ds) onto R, i.e. golving
o

NENRIVRPRIP - WIS ~Sriire

cdsseld
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for those n* > 0 satisfying

* .
8 - = [ ‘”/'(,’
val(Ds) inf{fo (yo) + §[<ai,yo> + niai]lyo + gyi 0, Y4 niDL’ /4

The proof given, treating under certain assumptions the case in which
Xb = Rn, the ai's are all zero, and fo is linear, has gaps however
(see [2, p. 181]), and is conclusive only for functions hi which are
everywhere finite. (E.g. the formula derived just above equation (5a)
requires C = Xo in our terminology.) The difficulties which can arise | ]
when C # X, or more generally when (5.6) fails, are illustrated by |
the following examples.

EXAMPLE 1. Suppose X = REond 1 {1,2}, and let £E, £,

be as follows:

g, (Yg em, 1

fo(xo) 5
EEN® #E x50 :
172 o —
fl(xo) 5
+ otherwise,
0 if El >0 ‘
fz(xo) = :
+ ® otherwise.

This yields for the primal problem

o e -t

bt i

val(Po) =0,

achieved on {xOIE1 >0 = 52}, and for the ordinary dual (note that C = Rf

E here),

val(Do) =0, .

achieved on {nllnl =0 5-"2}' Now it is not hard to verify that the conjugates :

P of fo,f f2 are the indicator functions

1’
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0 i y = (0,1

*
£ (v )=
- e + o otherwise
* 0 if n; < 0 and nn, 2 1
f1 (yo) =
+ o otherwise,
* 0 if n <0 and n, = 0
£, (yo) =
+ o otherwise ,

From this it follows that for the symmetrized dual,
+
val(Ds) =0,

I .
achieved on {(yo,y ,nI)Inl R LN 2" (0,1) = “¥ysY, = (0,00}, while

for the simplified symmetrized dual,
val (DS) = - o (infeasible).

The latter means,”‘f course, that the projection of (Ds) onto the space RI =R
of multipliers nI also has value -« and is infeasible.

This example shows that (Ds)’ and its projection, can be hopelessly
inadequate, with in fact an infinite gap between val(Ds) and val(U;),

even when both (5.8) and (5.8+) are satisfied and there exists a Slater point.

Condition (5.6) fails here. The next example is a slight variation, involving
a nonlinear fo, illustrating a finite gap between val(Ds) and val(D:),
where both values are achieved. ’

EXAMPLE 2. Let everything be the same as in Example 1 except for

replacing the f there by
o

€
fo(xo)-ez (VEIER).

so that

2




— = >
nzln n, = Ny if n, 0 and n, 0

* .
£ ()= {0 if my =0=n,

+ otherwise

Then one can check that

Vﬁl(Po) =1,

achieved on {x°|£l >0

val(Do) =1,

achieved on {nIInl =0 5-"2}’ and
+
vai(D S) =1,
achieved on {( ! nI)In =0<n = (0,1) = -y.,y, € D,}
YO,Y ’ 1 = 2’ Yo ’ 1’ 2 2 ’

whereas

val(Ds) =0,

I

achieved on {(YO,Y ,nI)Inl =0 2 Ngs ¥, (0,0) = vy, = Yz}-

According to Proposition 7, if condition (5.6) holds then solving
(D:? is essentially equivalent to solving the simpler (Ds), and if in
addition (5.8) holds then solving (Ds), or its projection, is essentially
equivalent to solving (Do)' The pair of conditions (5.6), (5.8) is
weaker than the conditions imposed in [2], and furthermore does not require
linearity or even homogeneity of fo. When (5.6) cannot be conveniently
arranged, though (as for example when fo is linear and the hi's are not
everywhere finite), then according to Proposition 7(b+) we could still
use (D:) , or its projection onto RI, as a satisfactory dual provided

(5.8+) is satisfied.

|
g
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6. The ordinary model as the projection of the symmetrized model.

In the last section we saw that the problems (Po)’ (D“). (Lo) in the
ordinary duality model can each be regarded as essentially a projection of
the corresponding problem (Ps)’ (Ds) (or (D:-)),.(Ls) in the symmetrized
duality model. We shall now show that in fact the entire ordinary problem
trio collectively is the projection of the entire symmetrized problem trio.
This we